LTC2872 [Linear Systems]

RS232/RS485 Dual Multiprotocol Transceiver with Integrated Termination; RS232 / RS485双多协议收发器,集成终端
LTC2872
型号: LTC2872
厂家: Linear Systems    Linear Systems
描述:

RS232/RS485 Dual Multiprotocol Transceiver with Integrated Termination
RS232 / RS485双多协议收发器,集成终端

文件: 总28页 (文件大小:441K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2872  
RS232/RS485 Dual  
Multiprotocol Transceiver  
with Integrated Termination  
FeaTures  
DescripTion  
The LTC®2872 is a robust pin-configurable transceiver  
that supports RS232, RS485, and RS422 standards while  
operating on a single 3V to 5.5V supply. The LTC2872 can  
be configured as four RS232 single-ended transceivers  
or two RS485 differential transceivers, or combinations  
of both, on shared I/O lines.  
n
Four RS232 and Two RS485 Transceivers  
n
3V to 5.5V Supply Voltage  
n
20Mbps RS485 and 500kbps RS232  
n
Automatic Selection of Integrated RS485 (120Ω)  
and RS232 (5kΩ) Termination Resistors  
n
Half-/Full-Duplex RS485 Switching  
n
Logic Loopback Mode  
Pin-controlled integrated termination resistors allow  
for easy interface reconfiguration, eliminating external  
resistors and control relays. Half-duplex switches allow  
four-wire and two-wire RS485 configurations. Loopback  
mode steers the driver inputs to the receiver outputs for  
diagnostic self-test. The RS485 receivers support up to  
256 nodes per bus, and feature full failsafe operation for  
floating, shorted or terminated inputs.  
n
High ESD: ±±6kV on Line I/O  
n
±.7V to 5.5V Logic Interface  
n
Supports Up to 256 RS485 Nodes  
n
RS485 Receiver Full Failsafe Eliminates UART Lockup  
n
Available in 38-Pin 5mm × 7mm QFN Package  
applicaTions  
n
Flexible RS232/RS485/RS422 Interface  
n
An integrated DC/DC boost converter uses a small induc-  
tor and one capacitor, eliminating the need for multiple  
supplies for driving RS232 levels.  
Software Selectable Multiprotocol Interface Ports  
n
Point-of-Sale Terminals  
n
Cable Repeaters  
n
L, LT, LTC, LTM, Linear Technology, the Linear logo and µModule are registered trademarks of  
Linear Technology Corporation. All other trademarks are the property of their respective owners.  
Protocol Translators  
n
PROFIBUS-DP Networks  
Typical applicaTions  
RS485 Mode with Duplex Control  
RS232 Mode  
Mixed Mode with RS485 Termination  
1.7V TO V  
3V TO 5.5V  
22µH  
1.7V TO V  
3V TO 5.5V  
22µH  
1.7V TO V  
CC  
3V TO 5.5V  
22µH  
CC  
CC  
470nF  
470nF  
470nF  
2.2µF  
2.2µF  
2.2µF  
2.2µF  
2.2µF  
2.2µF  
V
CAP  
SW  
LTC2872  
V
V
CAP  
SW  
LTC2872  
V
V
CAP  
SW  
LTC2872  
V
CC  
L
CC  
L
CC  
L
RS485  
FULL HALF  
DUPLEX  
RS485  
OFF ON  
H/F  
TE485-1  
DY1  
Y1  
DY1  
Y1  
Y1  
TERMINATION  
DY1  
120Ω  
120Ω  
Z1  
Z1  
A1  
DZ1  
RA1  
Z1  
A1  
RA1  
DY2  
A1  
B1  
RA1  
DY2  
B1  
Y2  
RB1  
DY2  
B1  
Y2  
Y2  
Z2  
DZ2  
RA2  
DZ2  
RA2  
Z2  
A2  
Z2  
A2  
A2  
B2  
RA2  
B2  
B2  
EE  
RB2  
RB2  
V
V
V
DD  
V
V
DD  
V
DD  
EE  
EE  
2.2µF  
2.2µF  
2.2µF  
2.2µF  
2.2µF  
2.2µF  
2872f  
2872 TA01  
1
LTC2872  
absoluTe MaxiMuM raTings  
pin conFiguraTion  
(Note 1)  
TOP VIEW  
Input Supplies  
V , V ..................................................... –0.3V to 7V  
CC  
L
38 37 36 35 34 33 32  
Generated Supplies  
................................................V – 0.3V to 7.5V  
V
1
2
3
4
5
6
7
8
9
31  
V
CC  
CC  
V
DD  
CC  
A1  
B1  
30 A2  
V .........................................................0.3V to –7.5V  
EE  
DD  
B2  
Y2  
29  
28  
V
– V ..............................................................±5V  
EE  
Y1  
SW........................................... –0.3V to (V + 0.3V)  
CAP............................................. 0.3V to (V – 0.3V)  
DD  
EE  
GND  
Z1  
27 GND  
Z2  
26  
39  
A±, A2, B±, B2, Y±, Y2, Z±, Z2 ......................±5V to ±5V  
DY±, DY2, DZ±, DZ2, RXEN1, RXEN2, DXEN±, DXEN2,  
LB, H/F, TE485_±, TE485_2,  
DY1  
DZ1  
RXEN1  
25 DY2  
V
EE  
24 DZ2  
23 RXEN2  
22 DXEN2  
DXEN1 10  
TE485_1 11  
TE485_2 12  
485/232_±, 485/232_2 ................................ –0.3V to 7V  
21  
20  
V
V
CC  
DD  
FEN, RA±, RA2, RB±, RB2...............–0.3V to (V + 0.3V)  
L
Differential Enabled Terminator Voltage  
13 14 15 16 17 18 19  
(A±-B± or A2-B2 or Y±-Z± or Y2-Z2) .....................±6V  
Operating Temperature  
LTC2872C ................................................ 0°C to 70°C  
LTC2872I .............................................–40°C to 85°C  
Storage Temperature Range .................. –65°C to ±25°C  
UHF PACKAGE  
38-LEAD (5mm × 7mm) PLASTIC QFN  
T
= ±25°C, θ = 34.7°C/W  
JA  
JMAX  
EXPOSED PAD (PIN #39) IS V , MUST BE SOLDERED TO PCB  
EE  
orDer inForMaTion  
LEAD FREE FINISH  
LTC2872CUHF#PBF  
LTC2872IUHF#PBF  
TAPE AND REEL  
PART MARKING*  
2872  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LTC2872CUHF#TRPBF  
LTC2872IUHF#TRPBF  
0°C to 70°C  
38-Lead (5mm × 7mm) Plastic QFN  
38-Lead (5mm × 7mm) Plastic QFN  
2872  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
2872f  
2
LTC2872  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = VL = 3.3V, TE485_1 = TE485_2 = 0V, LB = 0V unless otherwise noted.  
SYMBOL PARAMETER  
Power Supply  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
l
V
CC  
V
L
Supply Voltage Operating Range  
3
5.5  
V
V
Logic Supply Voltage Operating Range  
V ≤ V  
±.7  
V
CC  
L
CC  
V
CC  
Supply Current in Shutdown Mode  
RXEN1 = RXEN2 = V ,  
DXEN± = DXEN2 = FEN = H/F = 0V  
8
60  
µA  
L
l
l
l
V
Supply Current in RS485 Transceiver Mode 485/232_± = 485/232_2 = DXEN± =  
DXEN2 = V , RXEN1 = RXEN2 = 0V  
4.5  
5.5  
0
7
8
5
mA  
mA  
µA  
CC  
(Outputs Unloaded) (Note 3)  
L
V
Supply Current in RS232 Transceiver Mode DXEN± = DXEN2 = V ; 485/232_± =  
CC  
L
(Outputs Unloaded) (Note 3)  
485/232_2 = RXEN1 = RXEN2 = 0V  
V Supply Current in RS485 or RS232 Transceive DXEN± = DXEN2 = V , RXEN1 = RXEN2 = 0V  
Mode (Outputs Unloaded)  
L
L
RS485 Drivers  
l
l
l
l
|V  
|
OD  
Differential Output Voltage  
R = ∞, V = 3V (Figure ±)  
6
V
V
V
V
L
CC  
R = 27Ω, V = 4.5V (Figure ±)  
2.±  
±.5  
2
V
L
CC  
CC  
CC  
CC  
R = 27Ω, V = 3V (Figure ±)  
V
V
L
CC  
R = 50Ω, V = 3.±3V (Figure ±)  
L
CC  
l
l
∆|V |  
OD  
Difference in Magnitude of Differential Output  
Voltage for Complementary Output States  
R = 27Ω, V = 3V (Figure ±)  
0.2  
0.2  
V
V
L
CC  
R = 50Ω, V = 3.±3V (Figure ±)  
L
CC  
l
l
V
Common Mode Output Voltage  
R = 27Ω or 50Ω (Figure ±)  
3
V
V
OC  
L
∆|V  
|
Difference in Magnitude of Common Mode  
Output Voltage for Complementary Output States  
R = 27Ω or 50Ω (Figure ±)  
L
0.2  
OC  
l
l
I
I
Three-State (High Impedance) Output Current  
V
V
= ±2V or –7V,  
OUT  
CC  
–±00  
–250  
±25  
250  
µA  
OZD485  
= 0V or 3.3V (Figure 2)  
Maximum Short-Circuit Current  
–7V ≤ V  
≤ ±2V (Figure 2)  
mA  
OSD485  
OUT  
RS485 Receiver  
l
I
Input Current  
V
= ±2V or –7V, V = 0V or 3.3V  
–±00  
±25  
µA  
IN485  
IN  
CC  
(Figure 3) (Note 5)  
R
IN485  
Input Resistance  
V
= ±2V or –7V, V = 0V or 3.3V  
±25  
kΩ  
IN  
CC  
(Figure 3) (Note 5)  
l
l
Differential Input Signal Threshold Voltage (A–B) –7V ≤ (A or B) ≤ ±2 (Note 5)  
±200  
0
mV  
mV  
mV  
Differential Input Signal Hysteresis  
B = 0V (Notes 3, 5)  
±90  
–65  
Differential Input DC Failsafe Threshold Voltage  
(A–B)  
–7V ≤ (A or B) ≤ ±2 (Note 5)  
–200  
Differential Input DC Failsafe Hysteresis  
Output Low Voltage  
B = 0V (Note 5)  
30  
mV  
V
l
l
l
l
V
V
Output Low, I(RA) = 3mA (Sinking),  
0.4  
0.4  
OL  
3V ≤ V ≤ 5.5V  
L
Output Low, I(RA) = ±mA (Sinking),  
V
V
V
±.7V ≤ V < 3V  
L
Output High Voltage  
Output High, I(RA) = –3mA (Sourcing),  
V – 0.4  
L
OH  
3V ≤ V ≤ 5.5V  
L
Output High, I(RA) = –±mA (Sourcing),  
V – 0.4  
L
±.7V ≤ V < 3V  
L
l
l
l
Three-State (High Impedance) Output Current  
Short-Circuit Output Current  
0V ≤ RA ≤ V , V = 5.5V  
0
±5  
μA  
mA  
Ω
L
L
0V ≤ RA ≤ V , V = 5.5V  
±±35  
±56  
L
L
R
Terminating Resistor  
TE485 = V , A–B = 2V, B = 7V, 0V, ±0V  
±08  
±20  
TERM  
L
(Figure 8) (Note 5)  
2872f  
3
LTC2872  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = VL = 3.3V, TE485_1 = TE485_2 = 0V, LB = 0V unless otherwise noted.  
SYMBOL PARAMETER  
RS232 Driver  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
l
l
V
OLD  
V
OHD  
Output Low Voltage  
R = 3kΩ, V ≤ –6V  
–5  
5
–5.7  
6.2  
V
V
V
L
EE  
EE  
Output High Voltage  
R = 3kΩ, V ≥ 6.5V  
V
DD  
L
DD  
Three-State (High Impedance) Output Current  
Output Short-Circuit Current  
Y or Z = ±±5V  
Y or Z = 0V  
±±56  
±90  
µA  
mA  
±35  
RS232 Receiver  
Input Threshold Voltage  
l
l
l
0.6  
0.±  
±.5  
0.4  
2.5  
±.0  
0.4  
V
V
V
Input Hysteresis  
Output Low Voltage  
I(RA, RB) = ±mA (Sinking),  
±.7V ≤ V ≤ 5.5V  
L
l
Output High Voltage  
I(RA, RB) = –±mA (Sourcing),  
V – 0.4  
L
V
±.7V ≤ V ≤ 5.5V  
L
l
l
l
Input Resistance  
–±5V ≤ (A, B) ≤ ±5V, Receiver Enabled  
3
5
0
7
kΩ  
μA  
Three-State (High Impedance) Output Current  
Output Short-Circuit Current  
0V ≤ (RA, RB) ≤ V  
±5  
L
V = 5.5V, 0V ≤ (RA, RB) ≤ V  
±25  
±50  
mA  
L
L
Logic Inputs  
l
l
Threshold Voltage  
Input Current  
0.4  
0.75V  
V
L
0
±5  
µA  
Power Supply Generator  
V
DD  
V
EE  
Regulated V Output Voltage  
RS232 Drivers Enabled, Outputs Loaded with  
7
V
V
DD  
R = 3kΩ to GND, DY± = DY2 = V ,  
L
L
Regulated V Output Voltage  
–6.3  
EE  
DZ± = DZ2 = 0V (Note 3)  
ESD  
Interface Pins (A, B, Y, Z)  
All Other Pins  
Human Body Model to GND or V , Powered  
±±6  
±4  
kV  
kV  
CC  
or Unpowered (Note 7)  
Human Body Model (Note 7)  
2872f  
4
LTC2872  
swiTching characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = VL = 3.3V, TE485_1 = TE485_2 = 0V, LB = 0V unless otherwise  
noted. VL ≤ VCC  
.
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
RS485 AC Characteristics  
Maximum Data Rate  
l
l
(Note 3)  
20  
Mbps  
ns  
t
t
Driver Propagation Delay  
R
= 54Ω, C = ±00pF (Figure 4)  
20  
±
70  
6
PLHD485  
PHLD485  
DIFF  
L
l
Driver Propagation Delay Difference  
R
= 54Ω, C = ±00pF (Figure 4)  
ns  
DIFF  
L
|t  
– t  
PHLD485  
|
PLHD485  
l
l
l
t
t
Driver Skew (Y to Z)  
R
R
= 54Ω, C = ±00pF (Figure 4)  
±.5  
7.6  
±8  
±5  
ns  
ns  
ns  
SKEWD485  
DIFF  
DIFF  
L
, t  
Driver Rise or Fall Time  
= 54Ω, C = ±00pF (Figure 4)  
L
RD485 FD485  
t
t
, t  
,
Driver Output Enable or Disable Time  
FEN = V , R = 500Ω, C = 50pF (Figure 5)  
±20  
ZLD485 ZHD485  
L
L
L
, t  
LZD485 HZD485  
l
l
t
t
, t  
Driver Enable from Shutdown  
Receiver Input to Output  
FEN = 0V, R = 500Ω, C = 50pF (Figure 5)  
0.2  
55  
2
ms  
ns  
ZHSD485 ZLSD485  
L
L
, t  
C = ±5pF, V = ±.5V, |A–B| = ±.5V, (Figure 6)  
85  
PLHR485 PHLR485  
L
CM  
(Note 5)  
l
t
Differential Receiver Skew  
C = ±5pF (Figure 6)  
L
±
9
ns  
SKEWR485  
|t  
– t  
|
PLHR485  
PHLR485  
l
l
t
, t  
Receiver Output Rise or Fall Time  
C = ±5pF (Figure 6)  
3
±5  
85  
ns  
ns  
RR485 FR485  
L
t
t
, t  
Receiver Output Enable or Disable Time FEN = V , R = ±k, C = ±5pF (Figure 7)  
30  
ZLR485 ZHR485  
L
L
L
, t  
LZR485 HZR485  
l
t
, t  
Termination Enable or Disable Time  
FEN = V , V = 0V, V = 2V (Figure 8) (Note 5)  
±00  
µs  
RTEN485 RTZ485  
L
B
AB  
RS232 AC Characteristics  
Maximum Data Rate  
l
l
R = 3kΩ, C = 2500pF,  
±00  
500  
kbps  
kbps  
L
L
R = 3kΩ, C = 500pF (Note 3)  
L
L
l
l
Driver Slew Rate (Figure 9)  
R = 3kΩ, C = 2500pF  
4
V/µs  
V/µs  
L
L
R = 3kΩ, C = 50pF  
30  
2
L
L
l
t
t
, t  
Driver Propagation Delay  
Driver Skew  
R = 3kΩ, C = 50pF (Figure 9)  
±
µs  
ns  
µs  
PHLD232 PLHD232  
L
L
R = 3kΩ, C = 50pF (Figure 9)  
50  
0.4  
SKEWD232  
L
L
l
l
t
t
, t  
Driver Output Enable or Disable Time  
FEN = V , R = 3kΩ, C = 50pF (Figure ±0)  
2
ZLD232 ZHD232  
L
L
L
, t  
LZD232 HZD232  
t
t
t
, t  
Receiver Propagation Delay  
Receiver Skew  
C = ±50pF (Figure ±±)  
L
60  
25  
60  
0.7  
200  
ns  
ns  
ns  
µs  
PHLR232 PLHR232  
C = ±50pF (Figure ±±)  
L
SKEWR232  
l
l
, t  
Receiver Rise or Fall Time  
C = ±50pF (Figure ±±)  
L
200  
2
RR232 FR232  
t
t
, t  
,
Receiver Output Enable or Disable Time FEN = V , R = ±kΩ, C = ±50pF (Figure ±2)  
L L L  
ZLR232 ZHR232  
, t  
LZR232 HZR232  
Power Supply Generator  
l
V
/V Supply Rise Time  
DD EE  
0.2  
2
ms  
FEN = , (Notes 3 and 4)  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2. All currents into device pins are positive; all currents out of device  
pins are negative. All voltages are referenced to device ground unless  
otherwise specified.  
Note 4. Time from FEN until V ≥ 5V and V ≤ –5V. External  
components as shown in typical application.  
Note 5. Condition applies to A, B for H/F = 0V, and Y, Z for H/F = V .  
Note 6. This IC includes overtemperature protection that is intended  
DD  
EE  
L
to protect the device during momentary overload conditions.  
Overtemperature protection activates at a junction temperature exceeding  
±50°C. Continuous operation above the specified maximum operating  
junction temperature may result in device degradation or failure.  
Note 3. Guaranteed by other measured parameters and not tested directly.  
Note 7. Guaranteed by design and not subject to production test.  
2872f  
5
LTC2872  
Typical perForMance characTerisTics  
VCC Supply Current vs Supply  
Voltage in Shutdown Mode  
VCC Supply Current vs Supply  
Voltage in Fast Enable Mode  
VCC Supply Current  
vs RS485 Data Rate  
4.6  
4.4  
4.2  
4.0  
3.8  
3.6  
3.4  
3.2  
3.0  
200  
180  
160  
140  
120  
100  
80  
30  
25  
20  
15  
10  
5
V
CC  
V
CC  
= 5V  
= 3.3V  
ALL RS485 DRIVERS AND  
RECEIVERS SWITCHING.  
Y TIED TO A; Z TIED TO B,  
H/F = 0V, C = 100pF  
L
H/F HIGH  
H/F LOW  
ON Y AND Z TO GND  
85°C  
25°C  
DRIVER AND RECEIVER  
TERMINATION ENABLED  
60  
–40°C  
40  
TERMINATION DISABLED  
20  
0
0
3
3.5  
4
4.5  
5
5.5  
0.1  
1
10  
100  
3
3.5  
4
4.5  
5
5.5  
SUPPLY VOLTAGE (V)  
DATA RATE (Mbps)  
INPUT VOLTAGE (V)  
2872 G02  
2872 G03  
2872 G01  
VCC Supply Current  
vs Supply Voltage for RS485  
at Maximum Data Rate  
VCC Supply Current  
vs RS232 Data Rate  
RS485 Driver Differential Output  
Voltage vs Temperature  
240  
220  
200  
180  
160  
140  
120  
100  
80  
50  
45  
40  
35  
30  
25  
20  
15  
10  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
V
= 5V  
BOTH RS485 DRIVERS AND  
RECEIVERS SWITCHING.  
Y TIED TO A, Z TIED TO B  
H/F = 0V  
ALL RS232 DRIVERS  
AND RECEIVERS  
SWITCHING  
CC  
CC  
R
= 100Ω  
L
= 3.3V  
R
= 54Ω  
DRIVER AND RECEIVER  
TERMINATION ENABLED  
L
2.5nF  
0.5nF  
20Mbps, C = 100pF ON  
R
= 100Ω  
= 54Ω  
L
L
Y AND Z TO GND  
R
L
0.05nF  
0.5nF  
2.5nF  
85°C  
25°C  
–40°C  
0.05nF  
V
CC  
V
CC  
= 5V  
= 3.3V  
3
3.5  
4
4.5  
5
5.5  
0
50 100 150 200 250 300 350 400 450 500  
–50  
–25  
0
25  
50  
75  
100  
SUPPLY VOLTAGE (V)  
DATA RATE (kbps)  
TEMPERATURE (°C)  
2872 G05  
2872 G04  
2872 G06  
RS485 Driver Propagation Delay  
vs Temperature  
RS485 Driver Short-Circuit Current  
vs Short-Circuit Voltage  
RS485 Driver and Receiver Skew  
vs Temperature  
50  
40  
30  
20  
10  
0
150  
100  
50  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
CC  
V
CC  
= 5V  
= 3.3V  
V
V
V
V
= 3.3V, V = 1.7V  
L
CC  
CC  
CC  
CC  
= 5V, V = 1.7V  
L
= 3.3V, V = 3.3V  
L
= 5V, V = 5V  
L
OUTPUT LOW  
DRIVER  
0
–50  
–100  
–150  
RECEIVER  
OUTPUT HIGH  
10  
–50  
–25  
0
25  
50  
75  
100  
–10  
–5  
0
5
15  
–50  
–25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
SHORT-CIRCUIT VOLTAGE (V)  
TEMPERATURE (°C)  
2872 G07  
2872 G08  
2872 G09  
2872f  
6
LTC2872  
Typical perForMance characTerisTics  
RS485 Receiver Propagation  
Delay vs Temperature  
RS485 Receiver Output Voltage  
vs Load Current  
RS232 Receiver Input Threshold  
vs Temperature  
6
5
4
3
2
1
0
80  
70  
60  
50  
40  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
V
V
V
= 5V  
= 3.3V  
= 1.7V  
L
L
L
V
V
V
V
= 3.3V, V = 1.7V  
L
CC  
CC  
CC  
CC  
= 5V, V = 1.7V  
L
= 3.3V, V = 3.3V  
L
= 5V, V = 5V  
L
INPUT HIGH  
INPUT LOW  
V
CC  
V
CC  
= 5V  
= 3.3V  
0
2
4
6
8
10  
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
OUTPUT CURRENT (mA)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
2872 G11  
2872 G10  
2872 G12  
RS232 Receiver Output Voltage  
vs Load Current  
RS485 Termination Resistance  
vs Temperature  
RS232 Operation at 500kbps  
6
5
4
3
2
1
0
130  
128  
126  
124  
122  
120  
118  
116  
114  
112  
110  
V
V
V
= 5V  
= 3.3V  
= 1.7V  
L
L
L
V
CM  
V
CM  
V
CM  
= –7V  
= 2V  
= 12V  
DY  
DZ  
Z
5V/DIV  
Y
RA  
RB  
2872 G15  
1µs/DIV  
WRAPPING DATA  
DOUT LOADS: 5kΩ + 50pF  
0
2
4
6
8
10  
–50  
–25  
0
25  
50  
75  
100  
OUTPUT CURRENT (mA)  
TEMPERATURE (°C)  
2872 G13  
2872 G14  
RS232 Driver Outputs Enabling  
and Disabling  
RS485 Operation at 20Mbps  
VDD and VEE Powering Up  
DY  
5V/DIV  
DXEN  
2V/DIV  
5V/DIV  
FEN  
Y
Z
FEN = VL  
5V/DIV  
1V/DIV  
5V/DIV  
Z
Y
V
DD  
Y
FEN = 0V  
Z
RA  
V
EE  
2872 G17  
2872 G18  
2872 G16  
40ns/DIV  
100µs/DIV  
20ns/DIV  
H/F HIGH  
Y, Z LOADS: 120Ω (DIFF) + 50pF  
2872f  
7
LTC2872  
pin FuncTions  
V
(Pins 1, 21, 31): Input Supply (3.0V to 5.5V). Tie all  
DY2(Pin25):RS485DifferentialDriver#2InputorRS232  
CC  
three pins together and connect 2.2µF capacitor between  
Driver #2y Input.  
VCC and GND.  
DZ1 (Pin 8): RS232 Driver #±z Input.  
DZ2 (Pin 24): RS232 Driver #2z Input.  
V (Pin 35): Logic Supply (±.7V to 5.5V) for the receiver  
L
outputs, driver inputs, and control inputs. This pin should  
Y1 (Pin 4): RS485 Differential Driver #± Positive Output  
or RS232 Driver #±y Output, RS485 Differential Receiver  
#± Positive Input (Half-Duplex Mode).  
be bypassed to GND with a 0.±µF capacitor if it is not tied  
to V . V must be less than or equal to V for proper  
CC  
L
CC  
operation.  
Y2 (Pin 28): RS485 Differential Driver #2 Positive Output  
or RS232 Driver #2y Output, RS485 Differential Receiver  
#2 Positive Input (Half-Duplex Mode).  
V
(Pin20):GeneratedPositiveSupplyVoltageforRS232  
DD  
Driver(7V).Connect2.2µFcapacitorbetweenV andGND.  
DD  
V (Pin39):GeneratedNegativeSupplyVoltageforRS232  
EE  
Z1 (Pin 6): RS485 Differential Driver #± Negative Output  
or RS232 Driver #±z Output, RS485 Differential Receiver  
#± Negative Input (Half-Duplex Mode).  
Driver (–6.3V). Tie all pins together and connect 2.2µF  
capacitor between V and GND.  
EE  
GND(Pins5,18,27,34):Ground.Tieallfourpinstogether.  
Z2 (Pin 26): RS485 Differential Driver #2 Negative Output  
or RS232 Driver #2z Output, RS485 Differential Receiver  
#2 Negative Input (Half-Duplex Mode).  
CAP(Pin17):ChargePumpCapacitorforGeneratedNega-  
tive Supply Voltage. Connect a 470nF capacitor between  
CAP and SW.  
485/232_1 (Pin 13): Interface Select #± Input. A logic low  
enables RS232 mode and a high enables RS485 mode for  
transceiver #±. The mode determines which transceiver  
inputs and outputs are accessible at the LTC2872 pins  
as well as which is controlled by the driver and receiver  
enable pins.  
SW (Pin 19): Switch Pin. Connect 22µH inductor between  
SW and V .  
CC  
A1 (Pin 2): RS485 Differential Receiver #± Positive Input  
(Full-Duplex Mode) or RS232 Receiver #±a Input.  
A2 (Pin 30): RS485 Differential Receiver #2 Positive Input  
(Full-Duplex Mode) or RS232 Receiver #2a Input.  
485/232_2 (Pin 14): Interface Select #2 Input. A logic low  
enables RS232 mode and a high enables RS485 mode for  
transceiver #2. The mode determines which transceiver  
inputs and outputs are accessible at the LTC2872 pins  
as well as which is controlled by the driver and receiver  
enable pins.  
B1 (PIn 3): RS485 Differential Receiver #± Negative Input  
(Full-Duplex Mode) or RS232 Receiver #±b Input.  
B2(Pin29):RS485DifferentialReceiver#±NegativeInput  
(Full-Duplex Mode) or RS232 Receiver #2b Input.  
RA1 (Pin 37): RS485 Differential Receiver #± Output or  
RXEN1 (Pin 9): Receivers #± Enable. A logic high disables  
RS232andRS485receiversintransceiver#±,leavingtheir  
outputs Hi-Z. A logic low enables the RS232 or RS485  
receivers in transceiver #±, depending on the state of the  
Interface Select Input 485/232_±.  
RS232 Receiver #±a Output.  
RA2 (Pin 33): RS485 Differential Receiver #2 Output or  
RS232 Receiver #2a Output.  
RB1 (Pin 38): RS232 Receiver #±b Output.  
RB2 (Pin 32): RS232 Receiver #2b Output.  
RXEN2(Pin23):Receivers#2Enable.Alogichighdisables  
RS232andRS485receiversintransceiver#2,leavingtheir  
outputs Hi-Z. A logic low enables the RS232 or RS485  
receivers in transceiver #2, depending on the state of the  
Interface Select Input 485/232_2.  
DY1 (Pin 7): RS485 Differential Driver #± Input or RS232  
Driver #±y Input.  
2872f  
8
LTC2872  
pin FuncTions  
DXEN1(Pin10):Drivers#±Enable.Alogiclowdisablesthe  
RS232 and RS485 drivers in transceiver #±, leaving their  
outputs in a Hi-Z state. A logic high enables the RS232 or  
RS485 drivers in transceiver #±, depending on the state  
of the Interface Select Input 485/232_±.  
H/F (Pin 15): RS485 Half-duplex Select Input for Trans-  
ceivers #± and #2. A logic low is used for full duplex  
operation where pins A and B are the receiver inputs and  
pins Y and Z are the driver outputs. A logic high is used  
for half duplex operation where pins Y and Z are both the  
receiver inputs and driver outputs and pins A and B do  
not serve as the receiver inputs. The impedance on A and  
B and state of differential termination between A and B is  
independent of the state of H/F. The H/F pin has no effect  
on RS232 operation.  
DXEN2(Pin22):Drivers#2Enable.Alogiclowdisablesthe  
RS232 and RS485 drivers in transceiver #2, leaving their  
outputs in a Hi-Z state. A logic high enables the RS232 or  
RS485 drivers in transceiver #2, depending on the state  
of the Interface Select Input 485/232_2.  
FEN(Pin16):FastEnable.AlogichighenablesFastEnable  
Mode. InfastenablemodetheintegratedDC/DCconverter  
is active independent of the state of driver, receiver, and  
termination enable pins allowing faster circuit enable  
times than are otherwise possible. A logic low disables  
Fast Enable Mode leaving the state of the DC/DC converter  
dependent on the state of driver, receiver, and termina-  
tion enable control inputs. The DC/DC converter powers  
down only when FEN is low and all drivers, receivers, and  
terminators are disabled (refer to Table ±).  
TE485_1 (Pin 11): RS485 Termination Enable for Trans-  
ceiver #±. A logic high enables a ±20Ω resistor between  
pins A± and B±. If DZ± is also high, a ±20Ω resistor is  
enabled between pins Y± and Z±. A logic low on TE485_±  
openstheresistors,leavingA±/B±andY±/Z±unterminated,  
independent of DZ±. The differential termination resistors  
are never enabled in RS232 mode.  
TE485_2 (Pin 12): RS485 Termination Enable for Trans-  
ceiver #2. A logic high enables a ±20Ω resistor between  
pins A2 and B2. If DZ2 is also high, a ±20Ω resistor is  
enabled between pins Y2 and Z2. A logic low on TE485_2  
openstheresistors,leavingA2/B2andY2/Z2unterminated,  
independent of DZ2. The differential termination resistors  
are never enabled in RS232 mode.  
LB (Pin 36): Loopback Enable for Transceivers #± and #2.  
A logic high enables Logic Loopback diagnostic mode,  
internallyroutingthedriverinputlogiclevelstothereceiver  
output pins within the same transceiver. This applies to  
bothRS232channelsaswellastheRS485driver/receiver.  
The targeted receiver must be enabled for the loopback  
signal to be available on its output. A logic low disables  
loopbackmode.Inloopbackmode,signalsarenotinverted  
from driver inputs to receiver outputs.  
2872f  
9
LTC2872  
block DiagraM  
1.7V TO 5.5V  
(≤ V  
3V TO 5.5V  
470nF  
SW  
)
CC  
22µH  
2.2µF  
0.1µF  
35  
21  
19  
17  
CAP  
V
V
CC  
L
15 H/F  
V
DD  
FEN  
LB  
16  
36  
20  
39  
TRANSCEIVER #1  
2.2µF  
V
EE  
PULSE-SKIPPING  
BOOST REGULATOR  
f = 1.2MHz  
DXEN  
10  
9
RXEN1  
GND  
2.2µF  
RT232  
RT485  
CONTROL  
LOGIC  
18  
TE485_1  
485/232_1  
11  
13  
V
CC  
DRIVERS  
1
5
GND  
Y1  
DY1  
DZ1  
232  
485  
232  
7
8
4
RT485  
120Ω  
Z1  
6
125k  
125k  
LOOPBACK  
PATH  
H/F  
RECEIVERS  
232  
PORT 1  
RT232  
A1  
B1  
5k  
5k  
2
3
125k  
RA1  
RB1  
RT485  
37  
38  
485  
120Ω  
125k  
232  
DXEN2  
RXEN2  
TE485_2  
485/232_2  
DY2  
22  
23  
12  
14  
25  
24  
33  
32  
TRANSCEIVER #2  
V
CC  
31  
GND  
27  
28  
26  
30  
29  
Y2  
Z2  
A2  
B2  
PORT 2  
DZ2  
RA2  
RB2  
GND  
34  
2872 BD  
2872f  
10  
LTC2872  
TesT circuiTs  
I
, I  
OZD485 OSD485  
Y OR Z  
Z OR Y  
Y
Z
R
R
L
GND  
OR  
GND  
DY  
+
DY  
OR  
DRIVER  
DRIVER  
V
OD  
V
L
V
L
+
V
OUT  
+
L
V
OC  
2872 F02  
2872 F01  
Figure 1. RS485 Driver DC Characteristics  
Figure 2. RS485 Driver Output Short-Circuit Current  
I
IN485  
A OR B  
B OR A  
RECEIVER  
+
V
IN  
V
IN  
R
=
IN485  
I
2872 F03  
IN485  
Figure 3. RS485 Receiver Input Current and Resistance (Note 5)  
V
L
t
t
PLHD485  
DY  
Y, Z  
PLHD485  
Y
Z
0V  
t
SKEWD485  
C
C
L
L
DY  
V
½V  
OD  
OD  
R
DIFF  
DRIVER  
90%  
10%  
90%  
10%  
0V  
0V  
Y - Z  
t
t
FD485  
RD485  
2872 F04  
Figure 4. RS485 Driver Timing Measurement  
2872f  
11  
LTC2872  
TesT circuiTs  
V
L
GND  
OR  
R
L
L
DXEN  
½V  
½V  
L
L
t
,
ZLD485  
0V  
V
Y
Z
V
CC  
t
t
t
LZD485  
ZLSD485  
C
C
L
CC  
V
OR  
GND  
L
DY  
½V  
½V  
Y OR Z  
Z OR Y  
CC  
CC  
DRIVER  
DXEN  
0.5V  
0.5V  
V
V
OL  
OH  
R
V
OR  
CC  
0V  
GND  
t
,
HZD485  
ZHD485  
t
L
ZHSD485  
2872 F05  
Figure 5. RS485 Driver Enable and Disable Timing Measurements  
V
AB  
0V  
A–B  
RA  
V
/2  
A
B
AB  
AB  
–V  
AB  
t
t
PLHR485  
PHLR485  
RA  
V
V
CC  
RECEIVER  
CM  
90%  
10%  
90%  
½V  
½V  
L
C
L
L
10%  
t
V
/2  
0V  
t
RR485  
FR485  
t
= t  
– t  
SKEWR485 PLHR485 PHLR485  
2872 F06  
Figure 6. RS485 Receiver Propagation Delay Measurements (Note 5)  
V
L
RXEN  
½V  
½V  
L
L
t
ZLR485  
0V  
t
t
A
B
LZR485  
V
L
0V TO 3V  
3V TO 0V  
V
OR  
GND  
R
L
L
RA  
½V  
½V  
RA  
RA  
L
L
RECEIVER  
0.5V  
0.5V  
V
V
OL  
C
L
OH  
RXEN  
0V  
t
HZR485  
ZHR485  
2872 F07  
Figure 7. RS485 Receiver Enable and Disable Timing Measurements (Note 5)  
2872f  
12  
LTC2872  
TesT circuiTs  
V
I
AB  
A
R
TERM  
=
V
L
I
A
TE485  
½V  
½V  
L
L
A
B
+
0V  
RECEIVER  
TE485  
V
V
AB  
t
t
RTZ485  
RTEN485  
90%  
I
A
10%  
+
B
2872 F08  
Figure 8. RS485 Termination Resistance and Timing Measurements (Note 5)  
V
L
t
DRIVER  
INPUT  
DRIVER  
OUTPUT  
PHLD232  
DRIVER  
INPUT  
½V  
L
½V  
L
t
PLHD232  
0V  
t
t
R
F
V
OHD  
OLD  
R
L
C
L
3V  
3V  
–3V  
DRIVER  
INPUT  
0V  
0V  
–3V  
V
6V  
t OR t  
t
= |t  
– t  
|
SLEW RATE =  
SKEWD232  
PHLD232 PLHD232  
F
R
2872 F09  
Figure 9. RS232 Driver Timing and Slew Rate Measurements  
V
L
DRIVER  
OUTPUT  
DXEN  
½V  
½V  
L
L
0V OR V  
L
0V  
t
t
HZD232  
ZHD232  
DXEN  
R
C
L
L
V
OHD  
0.5V  
0.5V  
DRIVER  
OUTPUT  
5V  
5V  
0V  
0V  
t
t
LZD232  
ZLD232  
DRIVER  
OUTPUT  
V
OLD  
2872 F10  
Figure 10. RS232 Driver Enable and Disable Times  
2872f  
13  
LTC2872  
TesT circuiTs  
+3V  
–3V  
RECEIVER  
INPUT  
RECEIVER  
INPUT  
RECEIVER  
OUTPUT  
1.5V  
1.5V  
t
t
PLHR232  
PHLR232  
V
C
L
L
90%  
10%  
90%  
10%  
RECEIVER  
OUTPUT  
½V  
½V  
L
L
0V  
t
t
RR232  
FR232  
t
= |t  
– t  
|
SKEWR232  
PLHR232 PHLR232  
2872 F11  
Figure 11. RS232 Receiver Timing Measurements  
V
L
RECEIVER  
OUTPUT  
RXEN  
R
½V  
½V  
L
L
L
GND  
OR V  
–3V OR +3V  
0V  
L
t
t
HZR232  
ZHR232  
RXEN  
C
L
V
OHR  
0.5V  
0.5V  
RECEIVER  
OUTPUT  
½V  
½V  
L
L
0V  
t
t
LZR232  
ZLR232  
V
L
RECEIVER  
OUTPUT  
V
OLR  
2872 F12  
Figure 12. RS232 Receiver Enable and Disable Times  
2872f  
14  
LTC2872  
FuncTion Tables  
Table 1. Shutdown and Fast Enable Modes  
485/232_1 AND RXEN1 AND DXEN1 AND TE485_1 AND  
DC/DC  
FEN  
0
485/232_2  
RXEN2  
DXEN2  
TE485_2  
H/F  
X
LB  
X
CONVERTER MODE AND COMMENTS  
X
X
±
±
0
0
0
0
OFF  
ON  
Shutdown: All Main Functions Off  
Fast-Enable: DC/DC Converter On Only  
±
X
X
Table 2. Mode Selection Table for a Given Port (FEX = X)  
485/232  
RXEN  
DXEN  
TE485  
H/F  
X
LB  
0
DC/DC CONVERTER MODE AND COMMENTS  
0
0
±
±
±
±
±
±
0
X
0
X
0
X
X
X
0
0
±
X
±
X
X
X
X
X
X
X
X
X
X
±
X
X
X
X
ON  
ON  
ON  
ON  
ON  
X
RS232 Drivers On  
RS232 Receivers On  
RS485 Driver On  
X
0
X
0
X
0
RS485 Receiver On  
X
X
0
RS485 Termination Mode (See Table 7)  
RS485 Full Duplex Mode  
RS485 Half Duplex Mode  
RS485 Loopback Mode  
0
±
0
X
X
±
ON  
ON  
X
±
RS232 Loopback Mode  
Table 3. RS232 Receiver Mode for a Given Port (485/232 = 0)  
RXEN  
RECEIVER INPUT (A, B)  
CONDITIONS  
No Fault  
RECEIVER OUTPUTS (RA, RB)  
RECEIVER INPUTS (A, B)  
±
0
0
0
X
0
±
X
Hi-Z  
±
±25kΩ  
5kΩ  
No Fault  
No Fault  
0
5kΩ  
Thermal Fault  
Hi-Z  
5kΩ  
Table 4. RS232 Driver Mode for a Given Port (485/232 = 0)  
DXENX  
DRIVER INPUT (DY, DZ)  
CONDITIONS  
No Fault  
DRIVER OUTPUT (Y, Z)  
0
±
±
X
X
0
±
X
±25kΩ  
No Fault  
±
0
No Fault  
Thermal Fault  
±25kΩ  
2872f  
15  
LTC2872  
FuncTion Tables  
Table 5. RS485 Driver Mode for a Given Port (485/232 = 1, TE485 = 0)  
DXEN  
DY  
X
CONDITIONS  
No Fault  
Y
±25kΩ  
0
Z
±25kΩ  
±
0
±
±
X
0
No Fault  
±
No Fault  
±
0
X
Thermal Fault  
±25kΩ  
±25kΩ  
Table 6. RS485 Receiver Mode for a Given Port (485/232 = 1, LB = 0)  
RXEN  
A–B (NOTE 5)  
CONDITIONS  
No Fault  
RA  
Hi-Z  
0
±
0
0
0
X
X
< –200mV  
No Fault  
> 200mV  
No Fault  
±
Inputs Open or Shorted Together (DC)  
X
No Fault  
±
Thermal Fault  
Hi-Z  
Table 7. RS485 Termination for a Given Port (485/232 = 1)  
TE485  
DZ  
X
H/F, LB  
CONDITIONS  
R(A TO B)  
Hi-Z  
R(Y TO Z)  
Hi-Z  
0
±
±
X
X
X
X
X
No Fault  
No Fault  
0
±20Ω  
±20Ω  
Hi-Z  
Hi-Z  
±
No Fault  
±20Ω  
Hi-Z  
X
Thermal Fault  
Table 8. RS485 Duplex Control for Given Port (485/232 = 1)  
H/F  
0
RS485 DRIVER OUTPUTS  
RS485 RECEIVER INPUTS  
Y, Z  
Y, Z  
A, B  
Y, Z  
±
Table 9. Loopback Functions for a Given Port  
LB  
0
RXEN  
TRANSCEIVER MODE  
X
±
0
Not Loopback  
Not Loopback  
±
±
Loopback (RA = DY, RB = DZ)  
2872f  
16  
LTC2872  
applicaTions inForMaTion  
Overview  
V
CC  
C1  
470nF  
L1  
22µH  
3V TO 5.5V  
The LTC2872 is a flexible multiprotocol transceiver sup-  
porting RS485/RS422 and RS232 protocols. It can be  
powered from a single 3.0V to 5.5V supply with optional  
logic interface supply as low as ±.7V. An integrated DC/  
DC converter provides the positive and negative supply  
rails needed for RS232 operation. Automatically selected  
integrated termination resistors for both RS232 and  
RS485 protocols are included, eliminating the need for  
external components and switching relays. Both parts  
include loopback control for self-test and debug as well  
as logically-switchable half- and full-duplex control of the  
RS485 bus interface.  
C4  
2.2µF  
35  
V
21  
19  
17  
L
V
SW  
CAP  
CC  
1.7V TO V  
CC  
V
DD  
V
20  
39  
L
C2  
2.2µF  
C5  
0.1µF  
BOOST  
REGULATOR  
V
EE  
34 GND  
GND  
C3  
2.2µF  
18  
2872 F13  
Figure 13. DC/DC Converter with Required External Components  
The LTC2872 offers two ports that can be independently  
configured as either two RS232 receivers and drivers or  
one RS485/RS422 receiver and driver depending on the  
state of its 485/232 pins. Control inputs DXEN and RXEN  
provide independent control of driver and receiver opera-  
tion for either RS232 or RS485 transceivers, depending  
on the selected operating protocol.  
Inductor Selection  
An inductor with a value of 22µH ±20ꢀ is required. It  
must have a saturation current (I ) rating of at least  
200mA and a DCR (copper wire resistance) of less than  
±.3Ω. Some small inductors meeting these requirements  
are listed in Table ±0.  
SAT  
Table 10. Recommended Inductors  
MAX  
TheLTC2872featuresruggedoperationwithanESDrating  
of ±±5kV HBM on the receiver inputs and driver outputs,  
both powered and unpowered. All other pins offer protec-  
tion exceeding ±4kV.  
L
I
DCR  
SAT  
PART NUMBER (µH) (mA) (Ω)  
SIZE (mm) MANUFACTURER  
BRC20±6T220M 22 3±0 ±.3  
CBC25±8T220M 22 320 ±.0 2.5 × ±.8 × ±.8 t-yuden.com  
2 × ±.6 × ±.6 Taiyo Yuden  
DC/DC Converter  
LQH32CN220K53 22 250 0.92 3.2 × 2.5 × ±.6 Murata  
murata.com  
Theon-chipDC/DCconverteroperatesfromtheV input,  
CC  
generating a 7V V supply and a charge pumped –6.3V  
DD  
Capacitor Selection  
V
EE  
supply, as shown in Figure ±3. V and V power  
DD EE  
The small size of ceramic capacitors makes them ideal for  
the LTC2872. Use X5R or X7R dielectric types; their ESR is  
low and they retain their capacitance over relatively wide  
voltage and temperature ranges. Use a voltage rating of  
at least ±0V.  
the output stage of the RS232 drivers and are regulated  
to levels that guarantee greater than ±5V output swing.  
The DC/DC converter requires a 22µH inductor (L±) and a  
bypass capacitor (C4) of 2.2µF or larger. The charge pump  
capacitor()is470nFandthestoragecapacitors(C2and  
C3) are 2.2µF. Larger storage capacitors up to 4.7µF may  
be used if C± and C4 are scaled proportionately. Locate  
C±-C4 close to their associated pins.  
BypasscapacitorC5onthelogicsupplypincanbeomitted  
if V is connected to V . See the V Logic Supply section  
L
CC  
L
for more details about the V logic supply.  
L
2872f  
17  
LTC2872  
applicaTions inForMaTion  
Inrush Current and Supply Overshoot Precaution  
In certain applications fast supply slew rates are gener-  
by more than ±V for proper operation. Logic input pins  
do not have internal biasing devices to pull them up or  
down. They must be driven high or low to establish valid  
logic levels; do not float.  
ated when power is connected. If V ’s voltage is greater  
CC  
than 4.5V and its rise time is faster than ±0μs, the pins  
V
and SW can exceed their Absolute Maximum values  
DD  
RS485 Driver  
duringstart-up. WhensupplyvoltageisappliedtoV , the  
CC  
The RS485 driver provides full RS485/RS422 compat-  
ibility. When enabled, if DI is high, Y–Z is positive. When  
the driver is disabled, Y and Z output resistance is greater  
than96k(typically±25k)togroundovertheentirecommon  
mode range of –7V to ±2V. This resistance is equivalent  
to the input resistance on these lines when the driver is  
configured in half-duplex mode and Y and Z act as the  
RS485 receiver inputs.  
voltage difference between V and V generates inrush  
CC  
DD  
currentflowingthroughinductorL±andcapacitorsC±and  
C2. The peak inrush current must not exceed 2A. To avoid  
this condition, add a ±Ω resistor as shown in Figure ±4.  
This precaution is not relevant for supply voltages below  
4.5V or rise times longer than ±0μs.  
5V  
0V  
≤10µs  
R1  
C1  
470nF  
Driver Overvoltage and Overcurrent Protection  
L1  
22µH  
1Ω  
1/8W  
The RS232 and RS485 driver outputs are protected from  
shortcircuitstoanyvoltagewithintheAbsoluteMaximum  
range ±±5V. The maximum current in this condition is  
90mAfortheRS232driverand250mAfortheRS485driver.  
INRUSH  
C4  
CURRENT  
2.2µF  
SW  
CAP  
GND  
19  
20  
17  
18  
V
CC  
21  
If an RS485 driver output is shorted to a voltage greater  
than V , when active high, positive current of about  
2872 F14  
CC  
V
DD  
±00mA can flow from the driver output back to V . If the  
CC  
C2  
2.2µF  
system power supply or loading cannot sink this excess  
current, clamp V to GND with a Zener diode (e.g., 5.6V,  
CC  
Figure 14. Supply Current Overshoot Protection  
for Input Supplies of 4.5V of Higher  
±W, ±N4734) to prevent an overvoltage condition on V .  
CC  
All devices also feature thermal shutdown protection that  
disables the drivers, receivers, and RS485 terminators in  
case of excessive power dissipation (see Note 6).  
V Logic Supply  
L
A separate logic supply pin V allows the LTC2872 to  
L
interface with any logic signal from ±.7V to 5.5V. All logic  
RS485 Balanced Receiver with Full Failsafe Support  
I/Os use V as their high supply. For proper operation, V  
L
L
L
The LTC2872 RS485 receiver has a differential threshold  
voltage that is about 80mV for signals that are rising  
and –80mV for signals that are falling, as illustrated in  
Figure ±5. If a differential input signal lingers in the win-  
dow between these thresholds for more than about 2µs,  
the rising threshold changes from 80mV to –50mV, while  
the falling threshold remains at –80mV. Thus, differential  
inputs that are shorted, open, or terminated but not driven  
for more than 2µs produce a high on the receiver output,  
indicating a failsafe condition.  
should not be greater than V . During power-up, if V  
CC  
is higher than V , the device will not be damaged, but  
CC  
behavior of the device is not guaranteed. If V is not con-  
L
nected to V , bypass V with a 0.±µF capacitor.  
CC  
L
RS232 and RS485 driver outputs are undriven and the  
RS485 termination resistors are disabled when V or V  
is grounded or V is disconnected.  
L
CC  
CC  
Although all logic input pins reference V as their high  
L
supply, they can be driven up to 7V, independent of V and  
L
V , with the exception of FEN, which must not exceed V  
CC  
L
2872f  
18  
LTC2872  
applicaTions inForMaTion  
RA  
lines, which establishes a logic-high state when all the  
transmitters on the network are disabled. The values of  
the biasing resistors depend on the number and type  
of transceivers on the line and the number and value of  
terminating resistors. Therefore, the values of the biasing  
resistors must be customized to each specific network  
installation, and may change if nodes are added to or  
removed from the network.  
RISING THRESHOLD  
SHIFTS IF SIGNAL IS  
IN WINDOW > ~2µs  
TO SUPPORT  
FAILSAFE  
V
AB  
(NOTE 5)  
2872 F15  
–80mV –50mV  
0V  
80mV  
Figure 15. RS485 Receiver Input Threshold  
Characteristics with Typical Values Shown  
The internal failsafe feature of the LTC2872 eliminates the  
need for external network biasing resistors provided they  
are used in a network of transceivers with similar internal  
failsafe features. This also allows the network to support a  
high number of nodes, up to 256, by eliminating the bias  
resistor loading. The LTC2872 transceivers will operate  
correctly on biased, unbiased, or under-biased networks.  
The benefit of this dual threshold architecture is that  
it supports full failsafe operation yet offers a balanced  
threshold, centered on 0V, for normal data signals. This  
balance preserves duty cycle for small input signals with  
heavily slewed edges, typical of what might be seen at the  
end of a very long cable. This performance is highlighted  
in Figure ±6, where a signal is driven through 4000 feet  
of CAT5e cable at 3Mbps. Even though the differential  
signal peaks at just over ±00mV and is heavily slewed,  
the output maintains a nearly perfect signal with almost  
no duty cycle distortion.  
Receiver Outputs  
The RS232 and RS485 receiver outputs are internally  
drivenhigh(toV )orlow(toGND)withnoexternalpull-up  
L
needed. When the receivers are disabled, the output pin  
becomes Hi-Z with leakage of less than ±5μA for voltages  
B
within the V supply range.  
L
0.1V/DIV  
A
RS485 Receiver Input Resistance  
(A-B)  
0.1V/DIV  
The RS485 receiver input resistance from A or B to GND  
(Y or Z to GND in half-duplex mode with driver disabled)  
is greater than 96k (typically ±25k) when the integrated  
termination is disabled. This permits up to a total of 256  
receiverspersystemwithoutexceedingtheRS485receiver  
loading specification. The input resistance of the receiver  
isunaffectedbyenabling/disablingthereceiverorwhether  
the part is in half-duplex, full-duplex, loopback mode, or  
even unpowered. The equivalent input resistance looking  
into the RS485 receiver pins is shown in Figure ±7.  
RA  
5V/DIV  
2872 F16  
200ns/DIV  
Figure 16. A 3Mbps Signal Driven Down 4000ft of CAT5e  
Cable. Top Traces: Received Signals After Transmission  
Through Cable; Middle Trace: Math Showing Differences  
of Top Two Signals; Bottom Trace: Receiver Output  
An additional benefit of the balanced architecture is excel-  
lent noise immunity due to the wide effective differential  
input signal hysteresis of ±60mV for signals transitioning  
through the window region in less than 2μs. Increasingly  
slower signals will have increasingly less effective hyster-  
esis, limited by the DC failsafe hysteresis of about 30mV.  
125k  
A
60Ω  
TE485  
60Ω  
125k  
B
RS485 Biasing Network Not Required  
2872 F17  
RS485 networks are often biased with a resistive divider  
to generate a differential voltage of ≥200mV on the data  
Figure 17. Equivalent RS485 Receiver  
Input Resistance Into A and B (Note 5)  
2872f  
19  
LTC2872  
applicaTions inForMaTion  
Selectable RS485 Termination  
the differential receiver inputs. With the H/F pin set to  
a logic-high, the Y and Z pins serve as the differential  
inputs. In either configuration, the RS485 driver outputs  
are always on Y and Z. The impedance looking into the  
A and B pins is not affected by H/F control, including the  
differential termination resistance. The H/F control does  
not affect RS232 operation.  
Propercableterminationisimportantforgoodsignalfidel-  
ity. When the cable is not terminated with its characteristic  
impedance, reflections cause waveform distortion.  
TheLTC2872offersintegratedswitchable±20Ωtermination  
resistors between the differential receiver inputs and also  
between the differential driver outputs. This provides the  
advantage of being able to easily change, through logic  
control, the proper line termination for correct operation  
whenconfiguringtransceivernetworks.Terminationshould  
be enabled on transceivers positioned at both ends of a  
network bus.  
Logic Loopback  
A loopback mode connects the driver inputs to the re-  
ceiver outputs (noninverting) for self test. This applies  
to both RS232 and RS485 transceivers. Loopback mode  
is entered when the LB pin is set to a logic-high and the  
relevant receiver is enabled.  
Termination on the driver nodes is important for cases  
wherethedriverisdisabledbutthereiscommunicationon  
the connecting bus from another node. Driver termination  
across Y and Z can be disabled independently from the  
termination across A and B by setting DZ low. See Table 7  
for details.  
In loopback mode, the drivers function normally. They  
can be disabled with output in a Hi-Z state or left enabled  
to allow loopback testing in normal operation. Loopback  
works in half- or full-duplex modes and does not affect  
the termination resistors.  
The termination resistance is maintained over the entire  
RS485 common mode range of –7V to ±2V as shown in  
Figure ±8. The voltage across pins with the terminating  
resistor enabled should not exceed 6V as indicated in the  
Absolute Maximum Ratings table.  
RS485 Cable Length vs Data Rate  
Many factors contribute to the maximum cable length  
that can be used for for RS485 or RS422 communication,  
including driver transition times, receiver threshold, duty  
cycle distortion, cable properties and data rate. A typical  
curve of cable length versus maximum data rate is shown  
in Figure ±9. Various regions of this curve reflect different  
performance limiting factors in data transmission.  
126  
V
CC  
V
CC  
= 5.0V  
= 3.3V  
124  
122  
120  
118  
116  
10k  
1k  
LTC2872  
MAX DATA RATE  
–10  
–5  
0
5
10  
15  
VOLTAGE (V)  
100  
2872 F18  
Figure 18. Typical Resistance of the Enabled RS485  
Terminator vs Common Mode Voltage of A and B  
RS485/RS422  
MAX DATA RATE  
10  
10k  
100k  
1M  
10M  
100M  
RS485 Half- and Full-Duplex Control  
DATA RATE (bps)  
2872 F19  
TheLTC2872isequippedwithacontroltochangetheRS485  
transceiveroperationfromfull-duplextohalf-duplex.With  
the H/F pin set to a logic-low, the A and B pins serve as  
Figure 19. Cable Length vs Data Rate (RS485/RS422  
Standard Shown in Vertical Solid Line)  
2872f  
20  
LTC2872  
applicaTions inForMaTion  
At frequencies below ±00kbps, the maximum cable length  
is determined by DC resistance in the cable. In this ex-  
ample, a cable longer than 4000ft will attenuate the signal  
at the far end to less than what can be reliably detected  
by the receiver.  
Pins ± and 3± if the traces back to the 2.2µF capacitor  
are indirect or narrow. These V pins mainly service the  
CC  
transceivers#±and#2,respectively. Table±±summarizes  
the bypass capacitor requirements. The capacitors listed  
in the table should be placed closest to their respective  
supply and ground pin.  
Fordataratesabove±00kbps, thecapacitiveandinductive  
properties of the cable begin to dominate this relation-  
ship. The attenuation of the cable is frequency and length  
dependent, resulting in increased rise and fall times at  
the far end of the cable. At high data rates or long cable  
lengths, these transition times become a significant part  
of the signal bit time. Jitter and intersymbol interference  
aggravate this so that the time window for capturing valid  
data at the receiver becomes impossibly small.  
Table 11. Bypass Capacitor Requirements  
CAPACITOR  
2.2µF  
SUPPLY (PIN)  
RETURN (PIN)  
GND (±8)  
GND (±8)  
GND (±8)  
GND (34)  
GND (5)  
COMMENT  
Required  
Required  
Required  
Required*  
Optional  
V
(2±)  
(20)  
(39)  
CC  
DD  
2.2 µF  
2.2uF  
V
V
EE  
0.±µF  
V (35)  
L
0.±µF  
V
(±)  
CC  
0.±µF  
V
(3±)  
GND (27)  
Optional  
CC  
* If V is not connected to V  
.
The boundary at 20Mbps in Figure ±9 represents the  
guaranteed maximum operating rate of the LTC2872. The  
dashed vertical line at ±0Mbps represents the specified  
maximum data rate in the RS485 standard. This boundary  
is not a limit, but reflects the maximum data rate that the  
specification was written for.  
L
CC  
Place the charge pump capacitor, C±, directly adjacent to  
the SW and CAP pins, with no more than one centimeter  
of total trace length to maintain low inductance. Close  
placement of the inductor, L±, is of secondary importance  
compared to the placement of C± but should include no  
more than two centimeters of total trace length.  
It should be emphasized that the plot in Figure ±9 shows  
a typical relation between maximum data rate and cable  
length. Results with the LTC2872 will vary, depending on  
cable properties such as conductor gauge, characteristic  
impedance, insulation material, and solid versus stranded  
conductors.  
The PC board traces connected to high speed signals A/B  
and Y/Z should be symmetrical and as short as possible  
to minimize capacitive imbalance and to maintain good  
differential signal integrity. To minimize capacitive loading  
effects, the differential signals should be separated by  
more than the width of a trace and should not be routed  
on top of each other if they are on different signal planes.  
Layout Considerations  
All V pins must be connected together and all ground  
CC  
Care should be taken to route outputs away from any sen-  
sitive inputs to reduce feedback effects that might cause  
noise, jitter, or even oscillations. For example, DI and A/B  
should not be routed near the driver or receiver outputs.  
pins must be connected together on the PC board with  
very low impedance traces or dedicated planes. A 2.2µF,  
or larger, bypass capacitor should be placed less than  
0.7cm away from V Pin 2±. This V pin, as well as GND  
CC  
CC  
Pin ±8, mainly service the DC/DC converter. Additional  
bypass capacitors of 0.±µF or larger, can be added to V  
CC  
2872f  
21  
LTC2872  
Typical applicaTions  
VCC = 3V to 5.5V, VL = 1.7V to VCC. Logic input pins not shown are tied to a valid logic  
state. External components necessary for operation are not shown.  
V
V
V
L
L
L
LTC2872  
485/232_1  
LTC2872  
LTC2872  
LTC2872  
485/232_1  
485/232_2  
485/232_2 485/232_1  
485/232_1 485/232_2  
H/F  
LB  
GND  
485/232_2  
H/F  
LB  
H/F  
LB  
LB  
GND  
GND  
DY1  
Y1  
DY1  
Y1  
Y1  
Y1  
DZ1  
RA1  
Z1  
A1  
DY1  
DY1  
RA1  
DZ1  
RA1  
Z1  
A1  
Z1  
Z1  
A1  
A1  
RB1  
B1  
RB1  
DY2  
B1  
Y2  
B1  
Y2  
RB1  
B1  
Y2  
DY2  
Y2  
DY2  
RA2  
Z2  
A2  
DZ2  
RA2  
Z2  
A2  
DZ2  
RA2  
Z2  
A2  
DY2  
RA2  
Z2  
A2  
B2  
B2  
RB2  
B2  
RB2  
B2  
2872 F20  
PORT 1: RS232  
PORT 2: RS232  
PORT 1: RS232  
PORT 2: RS485  
PORT 1: RS485  
PORT 2: RS232  
PORT 1: RS485  
PORT 2: RS485  
Figure 20. LTC2872 in Various Basic Port Configurations  
V
L
V
V
L
L
LTC2872  
LTC2872  
LTC2872  
DZ2  
H/F  
LB  
GND  
TE485_1  
TE485_2  
DZ1  
485/232_1  
485/232_2  
LB  
485/232_1  
RXEN1  
RXEN2  
H/F  
TE485_1  
TE485_2  
485/232_1  
485/232_2  
DZ1  
H/F  
LB  
GND  
485/232_2  
GND  
DZ2  
DY1  
Y1  
Y1  
Y1  
DZ1  
RA1  
Z1  
A1  
DY1  
RA1  
120Ω  
Z1  
DY1  
RA1  
120Ω  
Z1  
A1  
A1  
120Ω  
B1  
120Ω  
RB1  
B1  
Y2  
B1  
Y2  
Y2  
DY2  
RA2  
DY2  
RA2  
Z2  
A2  
DY2  
RA2  
120Ω  
Z2  
A2  
Z2  
A2  
120Ω  
B2  
B2  
120Ω  
B2  
2872 F22  
2872 F21  
2872 F23  
Figure 21. Loopback in  
RS232 and RS485 Modes  
Figure 22. Half-Duplex RS485  
Mode with Driver and Receiver Line  
Termination on Each Port  
Figure 23. Full-Duplex RS485 Mode  
with Driver and Receiver Line  
Termination on Port 1, and Receiver-  
Only Termination on Port 2  
2872f  
22  
LTC2872  
Typical applicaTions  
VCC = 3V to 5.5V, VL = 1.7V to VCC. Logic input pins not shown are tied to a valid logic  
state. External components necessary for operation are not shown.  
½ LTC2872  
V
L
H/F  
TE485  
½ LTC2872  
½ LTC2872  
120Ω  
120Ω  
V
V
L
L
TE485  
DZ  
TE485  
DZ  
H/F  
H/F  
2872 F24  
Figure 24. Typical RS485 Half Duplex Network  
½ LTC2872  
TE485  
H/F  
MASTER  
½ LTC2872  
SLAVE  
½ LTC2872  
120Ω  
120Ω  
120Ω  
V
V
L
L
TE485  
DZ  
H/F  
TE485  
DZ  
H/F  
2872 F25  
Figure 25. Typical RS485 Full Duplex Network  
2872f  
23  
LTC2872  
Typical applicaTions  
VCC = 3V to 5.5V, VL = 1.7V to VCC. Logic input pins not shown are tied to a valid logic  
state. External components necessary for operation are not shown.  
LTC2872  
H/F  
S3  
RS485  
INTERFACE  
Y1  
Z1  
INPUT1  
RA1  
OUTPUT  
A1  
RXEN1  
H/F  
S1  
INPUT2  
INPUT3  
B1  
Y2  
Z2  
RA2  
A2  
B2  
RXEN2  
S2  
INPUT4  
2872 F26  
S1  
0
S2  
1
S3  
1
SELECTED INPUT  
INPUT1  
0
1
0
INPUT2  
1
0
1
INPUT3  
1
0
0
INPUT4  
1
1
X
X
NONE/Hi-Z  
INVALID  
0
0
Figure 26. RS485 Receiver with 4-Way Selectable Inputs  
2872f  
24  
LTC2872  
Typical applicaTions  
VCC = 3V to 5.5V, VL = 1.7V to VCC. Logic input pins not shown are tied to a valid logic  
state. External components necessary for operation are not shown.  
LTC2872  
LTC2872  
RA1  
A1  
A2  
RB1  
B1  
RS232  
INPUT  
RS232  
INPUT  
OUT1  
S1  
OUT1  
S1  
RXEN1  
RXEN1  
R
R
IN  
IN  
–OR–  
RA2  
RB2  
B2  
OUT2  
S2  
OUT2  
S2  
RXEN2  
RXEN2  
2872 F27  
S1  
S2  
1
R
ACTIVE OUTPUT  
OUT1  
IN  
0
1
1
0
5k  
0
5k  
OUT2  
1
62.5k  
2.5k*  
NONE (Hi-Z)  
OUT1, OUT2  
0
* DOES NOT MEET RS232 SPECIFICATIONS  
Figure 27. Sharing RS232 Receiver Inputs  
3V TO 5.5V  
1.7V TO V  
CC  
LTC2872  
V
V
CC  
L
µP  
LOGIC  
LEVEL  
SIGNALS  
LINE  
LEVEL  
SIGNALS  
RS232  
AND/OR  
RS485  
GND  
2872 F28  
Figure 28. Low Voltage Microprocessor Interface  
2872f  
25  
LTC2872  
Typical applicaTions  
VCC = 3V to 5.5V, VL = 1.7V to VCC. Logic input pins not shown are tied to a valid logic  
state. External components necessary for operation are not shown.  
RA1  
DY2  
LTC2872  
A1  
Y2  
RS232  
IN  
RS485  
OUT  
Z2  
A2  
Y1  
RS232  
OUT  
RS485  
IN  
120Ω  
B2  
DY1  
RA2  
2872 F29  
Figure 29. RS232 RS485 Conversion  
RA1  
DY2  
LTC2872  
A1  
Y2  
120Ω  
120Ω  
120Ω  
B1  
Y1  
Z2  
A2  
120Ω  
Z1  
B2  
DY1  
RA2  
2872 F29  
Figure 30. RS485 Repeater  
2872f  
26  
LTC2872  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
UHF Package  
38-Lead Plastic QFN (5mm × 7mm)  
(Reference LTC DWG # 05-08-±70± Rev C)  
0.70 ± 0.05  
5.50 ± 0.05  
5.15 0.05  
4.10 ± 0.05  
3.15 0.05  
3.00 REF  
PACKAGE  
OUTLINE  
0.25 ± 0.05  
0.50 BSC  
5.5 REF  
6.10 ± 0.05  
7.50 ± 0.05  
RECOMMENDED SOLDER PAD LAYOUT  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
PIN 1 NOTCH  
R = 0.30 TYP OR  
0.35 × 45° CHAMFER  
0.75 ± 0.05  
3.00 REF  
5.00 ± 0.10  
37 38  
0.00 – 0.05  
0.40 ±0.10  
PIN 1  
TOP MARK  
1
2
(SEE NOTE 6)  
5.15 0.10  
5.50 REF  
7.00 ± 0.10  
3.15 0.10  
(UH) QFN REF C 1107  
0.200 REF 0.25 ± 0.05  
R = 0.125  
TYP  
R = 0.10  
TYP  
0.50 BSC  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING CONFORMS TO JEDEC PACKAGE  
OUTLINE M0-220 VARIATION WHKD  
2. DRAWING NOT TO SCALE  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.20mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
2872f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
27  
LTC2872  
Typical applicaTion  
5V  
3.3V  
470nF  
470nF  
22µH  
22µH  
2.2µF  
2.2µF  
V
L
SW  
CAP  
V
L
SW  
CAP  
DZ2  
LB  
GND  
1.8V  
CC  
CC  
V
485/232_2  
TE485_2  
LB  
V
485/232_1  
TE485_1  
DZ1  
485/232_1  
485/232_2  
TE485_1  
TE485_2  
DZ1  
0.1µF  
LTC2872  
LTC2872  
GND  
H/F  
H/F  
RS485  
Y1  
Y1  
DY1  
RA1  
DYI  
120Ω  
Z1  
120Ω  
Z1  
CAT5e  
CABLE  
A1  
A1  
RA1  
120Ω  
B1  
120Ω  
B1  
3.3V  
INTERFACE  
Y2  
1.8V  
INTERFACE  
DY2  
Y2  
DY2  
RA2  
Z2  
A2  
DZ2  
RA2  
Z2  
A2  
RS232  
120Ω  
B2  
RA2  
A2  
V
V
V
DD  
V
EE  
DD  
EE  
2872 F31  
2.2µF  
2.2µF  
2.2µF  
2.2µF  
Figure 31. LTC2872 on Left: RS485 Half-Duplex and Terminated, Plus RS232.  
LTC2872 on Right: Dual RS485 Half-Duplex and Terminated. All External Components Shown  
relaTeD parTs  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC2870/LTC287±  
RS232/RS485 Multiprotocol Transceivers with  
Integrated Termination  
3V to 5.5V Supply, Automatic Selection of Termination Resistors,  
Duplex Control, Logic Supply Pin, ±26kV ESD  
LTC±334  
LTC±387  
Single 5V RS232/RS485 Multiprotocol Transceiver Dual Port, Single 5V Supply, Configurable, ±±0kV ESD  
Single 5V RS232/RS485 Multiprotocol Transceiver Single Port, Configurable  
LTC280±/LTC2802/ ±.8V to 5.5V RS232 Single and Dual Transceivers Up to ±Mbps, ±±0kV ESD, Logic Supply Pin, Tiny DFN Packages  
LTC2803/LTC2804  
LTC2854/LTC2855  
LTC2859/LTC286±  
LTM288±  
3.3V 20Mbps RS485 Transceiver with Integrated  
Switchable Termination  
3.3V Supply, Integrated, Switchable, ±20Ω Termination Resistor, ±25kV ESD  
20Mbps RS485 Transceiver with Integrated  
Switchable Termination  
5V Supply, Integrated, Switchable, ±20Ω Termination Resistor, ±±5kV ESD  
Complete Isolated RS485/RS422 μModule®  
Transceiver + Power  
20Mbps, 2500V  
Isolation with Integrated DC/DC Converter,  
RMS  
Integrated Switchable ±20Ω Termination Resistor, ±±5kV ESD  
Dual Isolated RS232 µModule Transceiver + Power ±Mbps, 2500V Isolation with Integrated DC/DC Converter, ±±0kV ESD  
RMS  
LTM2882  
2872f  
LT 0312 • PRINTED IN USA  
LinearTechnology Corporation  
±630 McCarthy Blvd., Milpitas, CA 95035-74±7  
28  
LINEAR TECHNOLOGY CORPORATION 2012  
(408) 432-±900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY